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ABSTRACT

Numerical analysis of Markovian queueing networks,
and graphical communication of problem statements and
results, offer a potential for truly conversational
use of computers for "high-traffi-" design of large-
scale systems. However, one must develop a translator which
converts the pictorial language of queueing network
diagrams to the data structures required for efficient
numerical analysis. This requires the development of new
mathematical models for networks, and for the meaning
of their components. Such mathematical models are
explored, and their role in the development of adequate
programming systens is described.

These models, algebraic in form, provide a vehicle
for the information ronveyed directly by the diagranm,
the information implicit in the symbology of the diagram,
the information upon which the actual calculations are
performed, and the procedure which transforms the infor-
mation from the form of the diagram to the form for

calculation.
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NETWORK MODELS FOR THE CONVERSATIONAL
DESIGN OF STOCHASTIC SERVICE SYSTEMS

V. L. Wallace
K. B. Irani

1. INTRODUCTION

It is frequently desirable to design stochastic ser-
vice systems which cannot be adequately analyzed by nor-
mal queueing theoretic models. Such systems consist, in
the most usual instances, of numerous waiting lines (or
""queues'"), servers, and controlling or directing stations
which determine the discipline of task flow through the
system. These systems are often realistic representations,
for high-traffic design purposes, of behavior in diverse
fields such as plant management, telephone switching, air
traffic control, electronic warfare, logistics, and com-
puter system specification and contrcl.

Improved techniques for the design of such systems
are greatly needed. For example, a design problem of this
type which has not yet been adequately resolved is at the
heart, of a current crisis in the development of execu-
tive systems for demand-paged, multiprogrammed, timeshared
computer systems. Problems of this type are also found
frequently in the course of selecting the equipment and
executive control strategies which permit a modern large-

scale computer system to serve a specific environment.
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These problems have, in the past, required painstaking
study and could not be answered generally enough to be
treated routinely. Increasingly, as the 'computer
utility" concept gains acceptance, these ''queueing"
problems will assume a more and more dominant position as
the source of computer system inefficiency.

Similar needs for improved techniques . ¢ found
everywhere that hi~h-traffic prob'~~- occur. This is
the natural result of the trend of every technology
toward ever larger and more complex systems, with ever
greater levels of traffic. New techniques should permit
a more routine design of individual systems and stra-
tegies for specific environments.

One of tne major hopes for significant improvement
of design capabilities using queueing models lies in the
so-called "conversational" computer techniques, whereby
the calculating power of a computer can be closely coupled
to the creative power of a design engineer. If a de-
signer can freely pose alternative models to a computer
and get immediate evaluation of various performance
criteria, he may then generate enough insight (via cut-
and-try procedures) to guess a near-optimal design for a
system far too large or tightly interrelated to be treated

by conventional optimization techniques.
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llowever, the use of conversational techniques for the

analysis and design of stochastic service systems requires
development of a problem-oriented programming system

which is specifically tailored to the demands of conver-
saticn. The input language must be terse, the calcula-
tions must be fast and reproducible, the variety of models
available must be broad, and the results should be in a
graphic, insight-provoking form.

The most promising approach to developing such a
system is to use graphic displays for the man-computer
commynication, and to use recursive numerical methods [8]
applied to Markovian models for the analysis. Graphical
input to the computer in the form of queueing network diagrams
provides an ideally compact medium for description of
problems, while an output in the form of graphs provides
a suitably insight-provoking form for results.

The recursive tschniques provide fast calculations
with excellent accuracy (hence reproducibility) of the
calculated results [9]. They also can be applied to a
wide variety of models. This variety of models is
considerably broader than is feasible with closed form
analysis, but not as general as the slower, less accurate
simulation methods. The detail available in numerically
solvable models is also midway between that available using

closed form analysis and simulation methods.




There are three basic operations involved in a pro-

gramming system to serve these goals. They are:

1) the servicing of the graphic operations,

2) the translation of the diagram to the form
required for (Markov chain) input to the
solution system,

3) the solution of the Markov chain.

The second of these is a process which, to our knowledge,
has not been previously attempted, and has no obvious
solution.

The subject of this paper is the exploration of
mathematical models for Markovian queueing ne Works
which can make this translation conceptually possible.
{The models presented herein have been employed [3]
in the development of specifications for such a
translator, and an implementation of these specifications
is currently in progress.)

In the next section we will take a closer look at the
prograi'ming system as a whole in order to detail the role
of the translator and its parts. Then, through the partial
analogy of the better understood electric network models,
Section 3 will attempt to provide a perspective for the
queueing network models to be developed. The subsequent

sections will develop various aspects of th¢ models.




2. THE TRANSLATION PROCESS

Formal representations of Markovian queueing models
in network diagram form are actually expressions in a

graphical language. For example, the simple diagram of

Figure 2.1 is a means of conveying a precise meaning

S e
O ’\\ rl u -
Figure 2.1

A Simple Network Diagram

(in the form of a Markov chain) through pictorial symbols
and syntax. The small circle indicates a Poisson arrival
source with mean intensity A, the large circle indicates
a queue with a maximum length of N, the rectangle indicates

a server with mean service time %. and the triangle indicates

4an exit from the system. The lines indicate task flow
according to rules established for each of the symbols
joined.

The language of network diagrams is potentially a
very rich c¢he. It can contain symbols representing a
considerable variety of sequencing rules, statistical
properties, and selection processes. A further example,
Figure 2.2, shows a network containing a random branch
point, an overflow switch, and a merge point, in

addition to the arrival source, queue, server, and exit.

-5-



The language, at present, must be confined to one
expressing systems which define finite Markov chains

wi stationary transition probabilities, due to the
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Figure 2.2

A Less Trivial Network Diagram

nature of the recursive numerical techniques to be used
for solution. Convenience dictates further that the
systems define continuous-time Markov chains. Specifi-
cations of the desired results are also limited to those
results which can be obtained by some operation upon the
equilibrium state probabilities. None of these restric-
tions are oppressive however, as much can be done

within them [9].

To put the model requirements in clearer perspective,
it is helpful to view the structure of the entire programming

system in a little more detail. A schematic diagram
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of such a system, as envisioned in this paper, is shown

in Figure 2.3. (The diagram shows the various processors
as oval symbols, and the information structures as rectangles.)
The first thing to be noted is that, in a real graphics
system involving cathode-ray displays, the input to the
system is not actually a network diagram. Rather, it is

a sequence of commands derived from the interpretation of
light-pen or tablet stylus actions, and keyboard actions.
These commands direct the construction of a diagram on the
display screen and inform the programming system of the
nature of the diagram and its desired output. The commands
and the diagram are equivalem expressions in two graphic

languages, often called a control language and a display

language, respectively [7]. The control language is the
actual form of the input to the translator.

A second observation about the system shown in Figure
2.3 is that the process of translating (indicated in the
figure by the dotted rectangle) input commands from the
control language to the form needed for analysis (the

matrix structure) is divided into two stages, a command

translator and a network translator. The intermediate

form, which is a result of the command translator, is

designated the network description structure.




'.-—_—‘-.—_— —— @ amy e s =

TRANSLATOR dle f
|
|

Control

Commands Network

Descriptio

‘7P _______ — e o = |-

Network
Diagram
(Display)

Matrix
Structure

OQutput
Specificatian
Output .
raphical Tables Output ‘Solutxon

. Formatter Structure
(Display)

Figure 2.3
Functional Diagram of a Graphic, Conversational

Programming System for Networks




The network description structure is the result of
parsing the input expression and storing it in a form which
can be more readily treated by a translator. Mnemonics
and graphics which are irrelevant to the meaning of the
input expression (where '"meaning'" here is the information
needed to form the matrix structure representation)
have been removed, and the result put in good systematic
form. The practice of providing such an intermediate
structure is well-established in programming-language
translators because of simplifications it makes possible.
In procedure-oriented compilers like MAD, ALGOL, or
FORTRAN, the transformation to an intermediate structure
is the first-pass operation which for algebraic state-
ments often results in a list of triples, perhaps using
Polish prefix form. (The form of this structure for
queueing networks will be discussed in Sec. 4.)

Because of the potential richness of the network
diagram language, and the interest in ease and flexibility
of use, it is very desirable to encourage users to
develop and use a shorthand notation. This is assumed to
be accomplished by making the translators table-driven,
and providing a facility for the user to d:fine his own
symbols and their meaning through special commands. The
language treated is then an open-ended one, and the

complex symbol graphics which would be r--=ded to differen-
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tiate among symbols of a large vocabulary can be avoided.
Also, since few symbols are used in any single group of
problems, some unnecessary memory requirements (both in
the computer and in the user's brain) for seldom-used
symbols are avoided.

The command translator associates with each symbol
used in the commands a meaning supplied by the table. This
meaning 1is both pictorial and symbolic, the pictorial
meaning being used in the formation of the network dia-
gram displayed, and the symbolic meaning being used in the
formation of the network description structure. Some of
the commands describe the solution desired and the form
of its display. The command translator must also parse
these and place them in a structure called the ouput
specification structure. (The specifications so-described
indicate. for example, which random variables of the
queueing networks are to be examined, whether an expec-
tation oxr a distribution furction is to be displayed, and
whether the result is to be displayed as a graph or a
table.)

The network translator associates with each symbol
used in the network description structure a meaning supplied
by the associated table. This meaning is technical. For
example, if a symbol is known to represent a "server,"
the network translator must replace the "server'" symbol

by technical information which tells us all we need to know
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about how the '"server-ness'" of the component affects the
qualities of the matrix structure. The network translator
then can alter the form of this information to produce

the matrix structure. The tables can be readily changed
as the user's vocabulary changes.

The remainder of the system in Figure 2.3 is more or
less self-explanatory. The analyzer operates upon the
Markovian model described by the matrix structure and
determines a vector of equilibrium state probabilities,
which is the '"solution structure' of the figure. These
results are then processed according to the output
specifications to provide the desired output of graphs
and tables via the "output display file."

From this survey of the parts of the programming
system, we have seen that the heart of the translator
is a table-driven processor (the ''network translator')
which takes a parsed description (the ''network description")
of the symbolic network diagram, associates meaning with
its symbols, and prepares an output (the '"matrix struvcture')
which is descriptive of a Markov chain in an easily
solved form.

To develop a translator program, however, a mathe-

matical model is needed which uncquivocally answers the

four basic questions:
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(A) What is the useful information directly conveyed
by the diagram (as abstracted for the "network des-
cription')?

(B) What is the information which must be presented

to the analysis program (represented in the "matrix

structure")?

(C) What is the algebraic procedure corresponding to
the transformation from network diagram to
"matrix structure?"

(D) What is the useful information indirectly
conveyed by the symbols of the diagram (as
represented in the "table" of the "network

translator')?

These questions are not unusual in the context of
programming languages. The tirst calls for syntactic
description of the input larguage, the second catls
for syntactic definition of the output language, the
third calls for specification of the translation
procedure, and the last cal.s for scmantic definition
of symbolic operators (like macro-definitions).
However, models by which they can be answered for

queueing networks have not becen previously available.

The model will be algebraic in nature so that the
translation procedure can be complctely described 1in

algebraic terms. Thus, it reprecsents a new symbolic
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framework in which queueing networks can be discussed with
precision. Because of the novelty of the model, however,
it is helpful in this report to precede its description

by an analogous description of a model for electric net-
works, whicni are well understood. The functional diagram
of Figure 2.3 is equally appropriate as a description of

a system for analysis and design of electric networks,

and therefore such a description will provide a good

conceptual framework for all the work that follows.



3. ELECTRIC NETWORKS: A PARTIAL ANALOGY

It will be supposed, for simplicity, that the
electric networks to bemodeled are linear, finite, passive,
bilateral, and initially quiescent; that the solution
required is a transient analysis of the voltage at
particular nodes; and that sources will be solely
current sources in the form of step functions. The
network diagrams would be like that of Figure 3.1. These
would somehow be translated into matrices which define

sets of "node equations" for the networks.

I2
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Figure 3.1

An Electric Network

An electric network diagram such as the one in
Figure 3.1 consists of a collection of branches representing

generic things like "'resistors," '"capacitors,'" and '"current

-14-
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sources.'" Each branch has two identifiable terminals,
and the terminals of all the branches are joined in groups
to form '"nodes." In addition, each branch has a parameter

(e.g., G L C L

10 b Yy etc.) adjoined to it which

10 koo
modifies its generic description in some as yet undes-
cribed manner.

We know, from classical electric network theory,
that the meaning of this network diagram is ultimately
a mathematical relationship between independent current
source values and electrical potentials imagined to be
present in the network. Making the usual assumption that
the potentials are measured relative to the datum (bottom)
node, there is one unknown potential (a function of time)
for each nondatum node. If we represent these potentials

by a vector V of their Laplace transforms, then the

relationship can be expressed by the matrix equation

YV (3.1)

H
—

where Y is a matrix of transform admittances, and I

is a vector of (Laplace) transformed node-driving currents.

These latter two objects are uniquely determined from the
information available in the diagram, and would represent

the information stored in the matrix structure defined in




-16-

Figure 2.3. When they are known, the solution V can
be obtained by well-known numerical methods.

Our purpose in this section is to show how Y
and I can be routinely found from the network diagram,
so that insight can be gained into the more complex
procedure needed for queueing networks.

The first step is to transliterate the network
diagram into a neater abstraction of its explicit content.
Let a network Ne be defined simply by a collection L

of branches and a collection K of nodes, so that

Ne = <L,K> (3.2)
L = {Zj:Je Jl} (3.3)
K = {kj:JG Jz}, (3.4)
where J1 and J2 are index sets. Furthermore, let

a branch Zj, je Jy o be defined by the three things which
identify it uniquely: a generic '"type value" Aj (which
may take on values of "resistor,'" 'capacitor,'" "inductor,"

and "current source'"), a real parameter value cj

(providing the value of resistance, capacitance, inductance,

or current, as appropriate), and an ordered pair Tj
of "terminals'" (directivity is important to sources, and

useful for the other branch types). Thus

L. = <\, 0., T.> je J,. (3.5)

A node k., , je Jé, is merely a set of terminals such that
J
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each terminal is contained by exactly one of the nodes in

K . In other words, the kj are defined so that
U k., = T (3.6)
je J, J

and
kjlﬂ ka e §, all j ,j,e J,, (3.7)

where § 1is the empty set, and T 1is the set of all
terminals in all the Tj’ je Jl.

Thus, in this notation, an arbitrary network has been
defined in terms of two primitive classes of objects:
terminals, and generic types of branches. The first
is merely a vehicle for topological (graph) information
about the diagram. The second represents the generic
identification of the graphics used for the branches
in the diagram, and has the four possible values:
"resistor," "inductor,'" 'capacitor," and '"'current source,"
corresponding to the four graphics available to the drawer

of the diagram. The model described by Eqs. (3.2) through

(3.7) is an algebraic representation of the network descrip-

tion structure of Figure 2.3,

The second step is to extend this model of a network
by replacing the branch-type designation by a model of its
distinctive meaning. This meaning was implicit in the
diagram, in the snse that the user left it understood in

the notation of the diagram. The extension of the model
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will make it explicit, and by so doing will allow us to
use it in forming Y and 1! . If the model is general
enough, it will also permit the introduction of new branch-
type constants for the desirable kind of language
flexibility proposed in the introduction.

A model to fit the purpose is readily found from
electric network theory. The type designation
of a branch Kj can be replaced by a pair of quantities—

the so-called short circuit current of the branch, and its

Norton admittance—and satisfactorily fulfill the re-
quirements. If we let ij represent the Laplace

trainsform of the former, and let yj represent the latter,
then the definition of the network Ne is extended by the

equation

A o= KigLy>, je dp . (3.8)

The two quantities are found for a given branch, when the
type designator and parameter value are known, by inspec-
tion of Table 3.1. Recall that current sources were
defined, for this system, to be strictly step functions,
and the parameters of branches of current-source type were
defined to be real constants, the amplitude of the step.
Thus the transform of the short-circuit current of a
source with parameter I1 is Il/s. The entries in the

table represent the coefficients of a linear equation

relating an assumed transformed branch zurrent lj to a




Table 3.1

Defining Branch Types

Type of Designator Aj Parameter Value sj ij yj
"Resistor" G 0 G
"Inductor" L 0 1
sL
"Capacitor" C 0 sC
"Current Source' 1 é 0

transformed branch voltage in such a way that

V., ,
J
(3.9)

Figure 3.2 defines this assumed pair of variables for abranch

s

Figure 3.2

Defining Branch Voltage and Current

-19-
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having terminal pair Tj = <t L, t,>. Table 3.1 plays the
role of the table of the network translator in the program-

ming system of Figure 2.3

Indeed, it is well known (by Norton's theorem) that
any two-terminal fragment of the networks being treated
here can be represented by a pair like that shown in
Eq. 3.8. Thus, to define new fundamental symbols to
represent any such two-terminal network fragment, one
need only append additional lines to Table 3.1 If, in
addition, vector value parameters (Oj) are permitted,
a model has been introduced which has considerable power
to accept shorthand notation in the network diagrams.
For example, if an appropriate new symbol were defined for
tne G-L-C parallel circuit, Figure 3.1 might have been
drawn equivalently as Figure 3.3. The newly defined
branches have a vector parameter giving conductance,
inductance, and capacitance. Other ways to use the

parameters, of course, also exist.

The third, and final, step in the process is to derive
the mati1ix Y and the vector I from the network model
described by Eqs. (3.2) - (3.8). For electric networks,
this also is a simple operation, derived directly from

Kirchoff's laws.
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Figure 3.3

An Equivalent Network to Figure 3.

Basic to the procedure is the calculation
A known as the branch-node incidence matrix.

be routinely constructed from an inspection of

3

>

of a matrix
It can

the terminal

pairs Tj, je Jl , and the terminal sets kj’ je JZ , called
nodes. (The exact procedure is not important here.)
Then, if we write the symbol 1 for a vector of the short

circuit currents ij for all branches,

vector 1 1is simply

where AT is the transpose of the matrix A

if we construct a diagonal matrix y

for each

ments are the Norton admittances yj

then the matrix Y i simply

the node current

(3.10)

Furthermore,

whose diagonal ele-

branch,
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Y = A yA. (3.11)

This completes the description of the process of translating
from diagram to matrix structure.

The four questions of Section 2 have been
answered. Equations (3.2) through (3.7) represent the syn-
tax of the network diagram, answering question A. The
matrix Y and the vector 1 of Eq. (3.1) represent
the object of translation, answering question B. The
translation procedure is the described procedure for the
creation of the matrix A , the calculation of 1 (via
Eq. (3.10)), and the calculation of Y (via Eq. (3.11)),
and is the ans.er to question (. Lastly, equation (3.8)
and Table (3.1) represent the semantics of the elements,
answering question D.

It is interesting to note that the discussion proceeded
at at least three different levels of abstraction. First
there was the network diagram, in which technological
characteristics were understood but not in evidence. That
is, things like voltages, currents, admittances, etc. were
entirely suppressed. Second, there was the level of the
mocdels, in which all] meaning was expressed in algebraic

and functional terms. The operationswre performed by
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observing set memberships or by multiplying matrices and
vectors. Third, there was the level of the technology
represented by the models. At this level, the funda-
mental operations of the lower level are vialidated and
explained in terms of physical laws (Ohm's law, Kirchoff's
laws) and in terms of theorems about them (Norton's
theorem, Superposition, etc.). These three levels will
also be found in the development of the queueing network

models.



4. DESCRIPTION OF QULUEING NETWORK DIAGRAMS

In this section, the "syntax" of queueing network
diagrams will be described as a means of answering the
first of the four basic questions, "What is the information
directly conveyed by the diagram?"” The treatment will
be analogous to that of electric networks (Sec. 3).

We postulate, from observation of queueing network
diagrams like those of Figures 1.1 and 1.2, that a queue-
ing network consists of a set of distinct objects which
will be called elements, and a set of connections among
them. The elements represent generic things like ''queues,"
"servers,' "sources," etc. They usually have parameters
associated with them. The connections join distinct,
identifiable parts ot the element, which will be called ports.

Only one connection can be made to a port.

There is some minor controversy over whether things
like the random branch and the priority branch, as used
in Figure 2.2, are rightly considered elements or connec-
tions. Philosophically, one can go either way. If
they are elements, then connections are merely associ-
ations of pairs of ports. If they are connections, then
every connection must be regarded as an instance of one of
several types of connections (simple, random branch,
priority branch,fetc.), and it is sometimes necessary to

associate parameters with them (viz., the branch

-24-
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probabi lities on the random branch). In this report,

we have chosen the latter formulation (multiple connection
types) because it results in simpler models of the ele-
ments when great generality of admissable element-

types is not required. It is, thus, a useful compromise
for a first attempt at implementation.

The essential information in the above description
of the metwork diagram may be succinctly summarized by
saying that a network N consists of a set E of
elements and a set C of connections, and that an
element e, or a connection cy consists of a type

identifier Ti ,a parameter set pi , and a port set

P. . Thus
i
N = <E, C> (4.1)
E = {ei:le Il} (4.2)
C = {ci:le 12} (4.3)
e, = <14, py, P>, all i e I1 (4.4)
c, = <T;, p;, P>, all Qe I, (4.5)
where Il and 12 are disjoint index sets. Every port

in the network belongs to exactly one element port set

P., ie I and exactly one connection port set Pi, ie I

i 1’ 2

The number of pprts in a port set Pi is a function of
the type and, in general, parameter values of the correspon-

ding element or connection.
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Equations (4.1) through (4.5) have an analogous
purpose to that of Eqs. (3.2) through (3.7). They
represent a mathematical model of queueing network
diagrams. The element-types, connection-types, and
ports are the primitive classes of objects in terms of
which a class of things called queueing networks can
be defined. This definition is a very general one,
capable of allowing an enormous variety of networks to
be represented. However, in particular instances of
application it may be restricted, just as electric
networks are often restricted to subclasses like "planar
networks," '"ladder networks," or the like. Furthermore,
by restricting the allowed symbol types, the language
can be further limited in specific applications, as in
the case of "linear'" electric networks, or '"passive"

electric networks.




5. A MODEL FOR THE MATRIX STRUCTURE

In this section we will concern ourselves with the
second question describing models for the information
represented in the "matrix structure,'" the output form
of the translator.

The matrix structure must describe a finite state,
continuous-time Markov chain {Xt: t>0} with stationary
transition probabilities, in a form suitable for efficient
numerical calculation of the equilibrium probabilities and
efficient identification of the states to which the
probabilities correspond. Traditionally, a Markov chain
of the above type is described by a matrix Q = (qr,s)’
r,seS , of transition intensities, where S 1is the set of

states, and

d
A, = 3¢ Prix, = s|X0 5 r]|t=0+ , all r,se S, (5.1)
qrsi 0, all r,se S; r # s (5.2)
z
ses drg = 0, all reS. (5.3)

(An alternative interpretation of T is that its
reciprocal represents the conditional expectation of the
time interval during which a sample Xt(m) of the process
remains in state r , given that it will jump from

the state 1r to the state s at the end of the interval.
It is also well known that, for these processes, all

such intervals are exponentially distributed random

-27-
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variables, independent conditionally upon the state r
and s .)
The equilibrium probabilities " for eachstate r

in S , are determined by a solution to the equations

Z m_q = 0, for seS, (5.4)
TeS r 'rs

and
r 7m_ = 1. (5.5)
resS r

Thus, for our purposes, the information which must be
provided as output from the translator (and hence input
to the analyzer) must describe the state set S and the
matrix Q

The matrix Q is related to the network diagram in
a complicated way, so that it is necessary to use an
equivalent form which has an easy 'physical" inter-
pretation in terms of the network components, and yet
can still be used like the matrix Q 1in numerical
solution of Eq. 5.4. This equivalent form is developed
by modeling the notion of "events'" of the network.

For example, consider the network of Figure 2.1.
In that example the states can be regarded as two-dimen-
sional vectors <xl,x2> , the first coordinate (xl)
being the number of tasks in the queue, and the second

(xz) being the number of tasks in service (0 or 1)

The state set is S = {<0,0>,<0,1>,<1,1>,...,<N,1>}
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There are two "events'" which occur: '"task arrivals"

and "task completions.' If we can model these alge-
braically, and show that the model is equivalent to a
description of Q , then we have a way of conceptually
relating the diagram to the matrix. (In general, the
events will be associated with specific network components
in specific ways.’

One such model is to consider the '"events'" of a
network as a set of triples whose first component
describes the set of states at which the event can occur,
whose second component describes the resulting state as a
function of prior state, and whose third component des-
cribes the probability intensity of occurrence of the
event. Proceeding with our example, the states for which
an "arrival" can occur are all those for which the queue is
not full, and it results in an increment of X, by one,
except when the server is empty (x2 = 0) when it
increases X, by one. This event occurs with probability

intensity XA , so that the event could be written

g, = <bj,h ,up> (5.6)
where
b = S-{<N,1>} = {<0.0>,<0’1>n<1’1>’°"’<(N‘1)’1>} ’

- _— LTI



<0,1>, when <x > = <0,0>

1%

Xy l1,x,>, elsewhere in bl’

and

Similarly, the '"completion' event can occur only when

x, >0, it results in a decrease of quecue length x

2 1
whenever x >0 orin emptying the server if x; =0,
and it occurs with probability intensity u
Thus, the event can be written

gz =] <b2,}12,U2> (5.7)
where
b2 = S-{:0,0>} = {<0,1>,<1,1>,...,¢<N,1>}
<0,0> when<x1,x2> = <0,1>
h, (xy,%,)
and <x1-1,x2>, elsewhere in b2’
Uz = U
In this example, then, the set of events is
E o= {E,,6,) (5.8)

Following this approach in general, let = , the set
of events of a network, be an indexed set

g = {ak: ke K, }, (5.9)

1
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where, for all k e K § is a triple

Qk = <bk’hk’“k>’ (5.10)
and where bk is a subset cf S, m is a function
on bk to S , and My is a positive constant,

This model of network activity is readily shown
to be equivalent to the matrix Q . Observe that each
event &k describes a set of transitions having a
pirticular intensity, and thus can be viewed as pre-
ciscly describing an elementary transition matrix Qk
having a very special form. The set bk identifies
the rows of Qk which have nonzero entries, the function
h defines the column hk(r) in which a single nonzero

k

off-diagonal entry of the rth row (r e bk) appears, and

the constant u defines the value of that element as well

k

as the negative of the diagonal entry of the rth row
(row sums must be zero). The matrix Q <can be con-
structed from I by summing

Q= L Qk . (5.11)
keK1

Furthermore, since any matrix Q <can be written as a
finite sum of such matrices Qk , one can always construct
a (non-unique) set = from any Q . (Of course, the

events so constructed will not always have a useful



physical interpretation unless the component Qk's
are chosen well.) This shows the equivalence between
= and Q .

The even- set = is the intermediate form which 1is
the object of network translation and the subject of
numerical analysis. The matrix structure is a computer

representation of this set.
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6. A NETWORK TECHNOLOGY

At this point the fourth question, '"What is the
useful informaticu indirectly conveyed by the symbols
of the diagram?'" will be discussed in general terms.

The physical connection between element and network,
between the whole and its parts, will be explored. A
more detailed model, under specific limitations of
application, will be deferred to Section 8.

In the previous section, we have seen that a network
can be described by a state set and an event set. Our
intuition tells us that individual elements of the network
ought also to have things like states and events, or
how else could we refer to the '"length" of a queue, or the
"occurrence of an arrival'" in a source element with such !
disdain for the identification of their neighbors? 1In
this section a generalized interpretation of elements and

connections in such intuitive terms will be explored, so

- that algebraic definitions for element-types and connection-

types can bear a realistic interpretation. The algebraic l
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definitions, which will be developed in Section 8, will
be more specific and limited than these interpretations,
just as the <Ij’Yj> definition for electric branch
types applies to much more restricted electric net-
works than a discussion of Kirchoff's laws would require.
To be concrete, let us first describe what we consider
a ""server' to be. It is an object which can be in one of
three possible states: 'idle," '"busy," or '"completed."
This state can change in three possible ways! (1) If
the server is in the '"busy'" condition, a '"service comple-
tion'" may occur. (2) If the server is in the '"idle"
condition, an "input'" may occur at its input port.
(3) If the server is in the '"completed" state, an
"output'" may occur. The first of these is regarded to
occur at random times which are determined within the
server itself, without regard to occurrences elsewhere
in the network containing the server. The second and
third occur at times determined by the element or ele-
ments connected to the server at the input and output
ports, respectively. (These latter elements will be
called the associates of the server at the respective
ports.) Thus the occurrences which produce changes are
more fundamentally of only two types: those which are
self-generated (or autogenous) and those which are

externally generated (or exogenous).
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The change in state resulting from a "service
completion" depends upon the condition of its input

"can

and output associate. If the input associate
supply an output,”" and the output associate ''can accept
an input," then the service completion will immediately
cause both an input to its output associate and an output
from its input associate to occur, but will remain in

the '"busy'" state. In other words, it has produced
exogenous occurrences for both associates, but its own
state hasn't changed. On the other nand, if the output
associate could not '"accept an input," the server would
change to the '"completed'" state, waiting until the output
associate requests an output (i.e., produces an exogenous
occurrence at the output port). If theinput associate
cannot "supply an output" but the output associate can
"accept an input," then the server will change to the
""idle" state, and cause an input to the output associate
to occur.

An "input' occurrence or an ''output'" occurrence
resulting from an external cause (i.e., exogenous
occurrence) produces changes in state which are similarly
dependent upon properties of the associates. An "input"
will produce a change from "idle'" state to "busy." An
output when the input associate ''can supply an output"
results in change from '"completed" to "busy'"; otherwise

the change is from '"completed" to '"idle."
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The above description is a slightly abstracted ver-
sion of our normal concept of the properties of a server.
Other interpretations in terms of task flow, or similar
notions, will be equivalent and perhaps more easily
followed. From this illustration it should be easier
to abstract further the principles which will be common
to all elements.

First, elements relate to one another only through
variables identified with their ports. These variables
must have an interpretation which is the same for every
element, so that any element may be used as an associate
of another without alteration of thedefinition of either.

These variables will be referred to as endoconditions

at the respective ports. They represent all of the
information about an element which is needed to describe
its associate. If the associate is a server, the in-
formation needed must tell us, at least, whether or not
the element is able to '"accept an input" or "supply an
output'" (depending on whether the port in question is in-
put or output). Depending upon how broad the class of
networks to be represented, the endocondition may be
interpreted in different ways. If multiple task transfers
between elements are possible (as when a bulk server can
be represented), the endocondition might describe 'the
number of tasks which can be accepted (supplied) at an
input (output) port.!" Where networks are restricted

by limitations on allowed vocabulary or syntax to one-




Y P YOG EN
-

i

-37-

task-at-a-time transfers,then a simple two-valued
endocondition suffices.

Second, each element must have a set of states
which adequately describes its behavior. In the server,
this set has three members. 1In the queue it has as many
members as there are allowed lengths of the queue.
The state set of the network is contained in the Cartesian
product of each element state set. The element state 1is
a projection of the network state. The endocondition is a
function of the state of the element, and sometimes must
be a function of the endoconditions of the associates as
well.

Third, each element has a set (perhaps empty) of

objects which will be called autogenous events. These

are descriptions of the autogenous occurrences and the
state changes that result from them. The state change 1is
generally a function of the state of theelement and of the
endoconditions of the associates at all the ports.
(Although there is only one autogenous event in the
server, there are elements which have more than one, hence
our reference to a set of them. A queue has nc auto-
genous events.) Typical autogenous events represent
service completions in a server, and arrivals in a source

element.
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Finally, each element will have exogenous events

associated with 1ts ports. These describe the exogenous
occurrences and the state changes that result from them,.
As in the case of autogenous events, the state changes are
functions {perhaps random) of both the statecand the endo-
conditions of the associates at the other ports. Typical
exogenous events represent the act of inputting a ''task"
or a '"customer'" at an input port or of outputting one at an
output port. (Notice that logically both of these acts
appear to be instances of a single type of obiect, an
exogenous occurrence, and that only the words we use in
the interpretation are different.)

In some classes of networks, these two exogenous
occurrences are the only ones which can occur. In other
classes, such as those including bulk service elements,
one can have an input of one task, two tasks, or three
tasks, etc. In that case one must identify which of the
possible occurrences, determined by the associate., has
occurred. To this purpose we must identify another

variable, designated an endocontrol, which identifies

which of the possible occurrences is occurring at a parti-
cular port; for example, '"the number of tasks being
transferred through the port," would be an interpretation
of an endocontrol. The exogenous events of an element

at a port will also be functions of this endocontrol of the
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associate at that port. When this device is needed,
every autogenous and exogenous event must define the
endocontrols at the ports at the same time it defines
the transitions.

Connections other than '"simple'" connections serve
as a device to alter the identification of the endocondi-
tions of associates to the variables which events depend
upon. For example, if a server is connected to two other
elements through a '"priority branch" connection at 1its
output, then as far as the server is concerned the usso-

ciates can '"accept an input'" as long as either one (or

both) of them can accept an input, because if the high

priority path cannot accept an input, the low priority
path is polled. Similarly, the non-'"simple'" connections
alter the identification of the endocontrols. The number
of tasks transferred into an input port which is connected
to a low priority path of a priority branch connection is
the number provided by the supplying associate, less the
number transferred into the high priority associate.

The above discussion implies that the states and events
of the network can, through the suitable introduction
of interface variables (endoconditions and endocontrols),
be broken up into pieces, each of which is completely
described as a property of an individual element without
consideration of that element's context in the full

network. Every network event describes the result of a
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chain of element events originating from a single auto-
genous event in one element and propagating to its
associates through the effect of exog.-nous events at
the joined ports. The exogenous events in turn involve
the associates of the associates the same way, until
finally the entire influence of the autogenous event
has been traced out.

That states and events of the network can be broken
up in this way will, in the last analysis, be demon-
strated only by the consistency and interpretability
of detailed algebraic systems defined for specific

classes of networks using this notion.




7. EQUIVALENCE AND CONSOLIDATION

The interpretation used above represents a view-
point which is the basis for more precise definitions
of the entities described by queueing networks and their
components. Much remains to be done in formalizing it,
and developing theorems about and classifications
of such networks. However, it is not necessary to have
a complete, general theory before useful algebraic
definitions, especially for specialized subclasses of
networks, can be devised and translators developed.
Nevertheless, to be useful these specialized definitions
must have properties which are consistent with concepts
intuitively underlying all network theory.

One of these concepts is theooncept of equivalence
of subnetworks and networks. Out of this concept will
come, almost incidentally, a basic scheme for trans-
forming the network diagram to the matrix structure,
and providing an answer for the third of our basic
questions. The basic notion of equivalence says that it
should be possible to take any repeatable fragment of
a network diagram and call it a new type of network
element. For example, any of the objects in the boxes
in Figure 7.1 should be suitable elements, with the ports
shown, if the primitive components are. Of course, the
graphics would not necessarily be those shown, and would
probably be much more abbreviated.

-41-




Figure 7.1

Some Nonprimitive Elements

The network resulting from replacing these wgents
or "subnetworks" by elements of newly defined e'ement-
type should then be equivalent in the sense that the
same state set S and event set - should describe it.
Thus, Figure 7.2 shows a network which is equivalent

to that of Figure 2.1, but uses one of the new elements

Figure 7.2

An Equivalent Network

of Figure 7.1.

As a consequence of this view, there must be an
operator which maps connected sets of eiementz into
"equivalent" elements by 'absorbing' the connection which

joins them. We have named this the operation of consolidation.
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Any definition ot element types must be such that
this operation can be defined for all syntactically
altowed combinations of connections and elements
and the result should also be an clement. Thus, in an
abstract sense, the element types must have such a form

that the set of all possible element-types is closed

un ler the operation of consolidation. This is an im-
portant property of the algebraic models, and offers
4 considerable variety of the element types.

A consequence of this property is that the network
itself must have an equivaientelement: one which contains
no ports. Indeed, such an element must constitute a
canonical form for a class of equivalent networks
derived by various applications of the consolidation
operator to the original network. That canonical form
may be found by repeated application of the operator
until no connections remain.

This procedure describes a potential procedure for
the translation of the network diagram to the matrix
structure. The consolidation operator is repeatedly
applied until only one element remains. This element
e* has no ports, hence no exogenous events and endo-
or exo-conditions. It will have only a state set S*
and an autogenous event sct =* . With suitable
definitions, these two quantities should be readily
identifiable with, if not identical to, the state set S

and event set = of the network.



8. A MODEL FOR THE SYMBOL SEMANTICS

The network technology discussed above was intended
to provide a framework in which to develop models for the
element-types and connection-types. These models would
represent an answer to the fourth and last question,
explicitly describing the information implicitly pro-
vided by the user. They would also be of such a form that
the consolidation operator was well-defined, or that the
translation process could be otherwise described as an
algebraic operation upon a known set of operands, analo-
gous to the form <ij,y,> of branch-types in electric
networks.

Only one such model will be described here. This
model will be a relatively simple one specifically
designed to represent networks containing (at least)
queues, simple servers, infinite sources, and exits,
with connections including simple, random branch, and
priority branches. Of course, 1n view of the equivalence
properties posed in the previous section, many other ele-
ment-types will also be representable either because
they are equivalent {6 a network fragment containing
only the above primitive components, or because of
inherent (albeit accidentical) extra generality built into
the model. The use of limited models of this type is

analogous to the limitations (linear, finite, no-voltage-
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source, etc.) which are usually placed on electric
network models. The justification is solely one of
compromise between simplicity and utility.

An element-type T ieIl, has a value which is a
triple consisting of a state set Si , an autogenous

event set Ei , and an exogenous event function Zi

T, = <S,,E., 2>, el (8.1)

Each of these will now be defined in greater detail.

The state set Si of an element e is a finite set
of nonnegative integer n-tuples, where the dimension
of the n-tuples is characteristic of the element-type.
For each of the four primitives it is one-dimensional.

By definition, an autogenous event Ez of an element

e having state set Si is taken to be a triple
£y = <by.gg,u,> (8.2)
where

b2 is a subset of S,
i
8, is a constant n-tuple, such that for each
xebl, X + g, is in Si
M, is a positive real number

£ is an index in an index set Li'
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Here b2 is called the autocondition set of the event
52 , and represents a set of states for which the event

is possible; the constant is called the rate

Hy
of the event, and represents the probability intensity
of its occurrences; the constant n-tuple gg is called
the increment, and represents the change in state which
results from the occurrence of the event. (Notice that
the change in state has been here specialized to being
dependent only on state, not on exoconditions, and being
a constant increment.)

To illustrate, consider the '"service completion"
event 53 for a server having a mean service rate
(paramete;) Yy - The event can occur only in the busy
state, state 1 , and when in that state it occurs
with probability intensity vy . The event causes a change

from state 1 to the holding state, state 2 , so that the

change is unity. Thus,

£, = <{1}, 1,y>. (8.3)

{1

The autogenous event set consists of a set of

autogenous events

Ei = {EQ:QeLi}. (8.4)
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By definition an exogenous event cm at a port p
of an element e having a state set Si is taken also

to be a triple

Cm = <bm’gm'"m> (8.5)

b 1is a subset of S.
m i

is a constant n-tuple such that for each
X + is i .

xebm, 8, 1s in S1

m, is a probability

m is an index in some index set.

Here bm is the endocondition set, and represents the

set of states for which the endocondition is nonzero (e.g.,
if the port p is an input port, b is the set of states
for which a~ input of a task can be accepted); the

probability “m is the probability, given that the

stimulus (e.g., an input of a task) has occurred and that

the element is in a state of bm , that the change in

state produced is equal to 8n the increment of the event.
An example of an exogenous event is the '"input

of a task" event (call it ﬁa ;) at the input port p

of a queue whose maximum lengih is N . An input can

be allowed only when the state is less than N , and it

results, with certainty, in an increase of the state by

unity. Thus
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Z, = <{0,1,...,N-1},1,1> (8.6)

For every port p of an element e, there is an
exogenous event set Zi(p) , representing all the possible
responses to the external stimulus at the port p
The function Zi has been called the exogenous event
function, and it is a function on P, to a set of triples
like Eq. 8.5. The set Zi(p) is a set of exogenous
events whose probabilities add up to zero or one for

each state of the element. Let
Zi(p) = {Q{meMi(p)}, all pePi,leIl, (8.7)

where the index sets Mi(p) are disjoint for all p

and i . Then
%: nm = 0 or 1 (8.8)
xeb
m
for each xeSi . Those states for which this sum is zero

are states for which the external stimulus cannot occur,
such as, for example, the states where an input task
cannot be accepted.

Table 8.1 verifies that each of the primitive
element types can be represented by this model. A
verification that the set of types so-defined is closed

under the operation of consolidation is not easily shown,

-
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and will be accepted here without proof. Moreover, the
operation of consolidation will not be defined although
it, in fact, constitutes a definition of the connection
types. The reader is referred to ref.[3] for a more
complete discussion of consolidation. 1t will merely be
noted that, if every connection has been eliminated from
the network by the process of consolidation, as proposed
in Section 7, the result will be a network consisting of
a single element whose port set is empty, hence whose
exogenous event function is a function whose domain is

empty. Thus the type information merely describes a set

of states and a set of autogenous events, the latter
being, in fact, the events required in the matrix model

of Section S.




9. CONCLUSIONS

The models required to produce a system for conversa-
tional design of a class of stochastic service systems have
been described, along with much of the framework of
attitudes and viewpoints which are necessary. This rep-
resents a start, and was intended to show the nature of
the work involved in the creation of such a system. It
also represents a good example of the problems likely
to be encountered in virtually any network-oriented
(i.e., symbolic, graphical) conversational programming

system, and the philosophies necessary to their solution.

We have shown how the characteristics of an algebraic
network model for Markovian queueing systems are related
to the needs of a programming system for conversational
design of stochastic service systems. This model represents
the beginnings of a mathematical system upon which a use-
ful theory can be built. 1t also outlines, abstractly,

the data structures and procedures of useful programming

Systems, one example of which is described in [3].

Within this framework, major portions of a specialized
model for simple queueing networks have been described
(Section 8). This model can be used to describe and trénslate
a wide array of useful queueing networks, and to permit them to

be numerically solved. Nevertheless, it represents only
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one such model which car be constructed within the
framework developed. There are many meaningful elements
which were not representable in the simple model, but which
can be described in terms of functional relationships
among the conditions, controls, and events. An example

of an element which cannot be represented in the model

of Section 8 is bulk server, which completes tasks in

groups of varying size. Models which permit such an

elemcnt, and others, to be represented must be developed

separately as experience with the present model is gained.
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